Dynamical density functional theory for microswimmers
نویسندگان
چکیده
منابع مشابه
Dynamical density functional theory for microswimmers.
Dynamical density functional theory (DDFT) has been successfully derived and applied to describe on one hand passive colloidal suspensions, including hydrodynamic interactions between individual particles. On the other hand, active "dry" crowds of self-propelled particles have been characterized using DDFT. Here, we go one essential step further and combine these two approaches. We establish a ...
متن کاملMulti-species dynamical density functional theory.
We study the dynamics of a multi-species colloidal fluid in the full position-momentum phase space. We include both inertia and hydrodynamic interactions, which strongly influence the non-equilibrium properties of the system. Under minimal assumptions, we derive a dynamical density functional theory (DDFT), and, using an efficient numerical scheme based on spectral methods for integro-different...
متن کاملMean - field dynamical density functional theory
We examine the out-of-equilibrium dynamical evolution of density profiles of ultrasoft particles under time-varying external confining potentials in three spatial dimensions. The theoretical formalism employed is the dynamical density functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys. 110, 8032 (1999)], supplied by an equilibrium excess free energy functional that i...
متن کامل6 Dynamical density functional theory for dense atomic liquids
Starting from Newton's equations of motion, we derive a dynamical density functional theory (DDFT) applicable to atomic liquids. The theory has the feature that it requires as input the Helmholtz free energy functional from equilibrium density functional theory. This means that, given a reliable equilibrium free energy functional, the correct equilibrium fluid density profile is guaranteed. We ...
متن کاملGeneral dynamical density functional theory for classical fluids.
We study the dynamics of a colloidal fluid including inertia and hydrodynamic interactions, two effects which strongly influence the nonequilibrium properties of the system. We derive a general dynamical density functional theory which shows very good agreement with full Langevin dynamics. In suitable limits, we recover existing dynamical density functional theories and a Navier-Stokes-like equ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Chemical Physics
سال: 2016
ISSN: 0021-9606,1089-7690
DOI: 10.1063/1.4939630